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ABSTRACT '
I-n this paper we extend and generalize-to the multivariate set-up

our earlier investigations related to expected remaining life functions

and general hazard measures including representations and stability

theorems for arbitrary probability distributions in terms of these con-

cepts. (The univariate case is discussed in detail in Kotz and Shanbhag,

Advances in Applied Probability 12 (1980).)
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t' .9'1. INTRODUCTLION

In the earlier paper by the authors, Kotz and Shanbhag (1980) (to

* be referred to as KSh for brevity) presented a detailed discussion of

new approaches to univariate probability distributions. We concentrated

*" on representations and characterizations of probability distribution

functions in terms of conditional expectations (specifically in terms of

the expected remaining life function - e.r.l. function) and in terms of

hazard measures.

In the course of our investigations, we succeeded in extending,

generalizing and simplifying a number of results dealing with e.r.l.

functions and hazard measures which have appeared in the literature of

the last two decades. We also presented some convergence theorems which

shed light on the structure of e.r.l. functions, hazard measures and

distribution functions in both the continuous and discrete cases (but "

not restricted to these cases only).

In many instance: of practical applications, requiring model build-

ing, there are indications of such results being of special potential

importance.

The present paper is structured along the lines of KSh (1980) but

is an initial attempt towards studying more subtle and difficult prob- -.

lems of multivariate distributions. In this paper, we shall attempt

to unify, extend, generalize and simplify results scattered in the ,

literature related to structures of multivariate distributions (in

particular but not exclusively -f a non-absolutely continuous nature), E]

of various definitions of hazard measures (unlike the univariate case .......

there is no unique definition of this concept in the multivariate case a _. -.

in the literature). Among other results, an over-compassing generali- -"

zation of the scalar multivariate hazard measure is given and an overall or

,le..2 - ...
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structure as well as certain convexity properties and their implications

related to this measure are revealed. In addition, we define and inves-

tigate multivariate analogues and extensions of e.r.l functions and -

trace their relations, first to the multivariate probability distribu-

tion functions and then to the corresponding univariate concept on the

one hand, as well as to (various generalizations of) multivariate hazard

measures on the other. Following the approach adopted in KSh (1980) for

the univariate case, we do not restrict ourselves necessarily to non-

negative random variables. (The notions of the hazard measure as well

as that of the e.r.l. functions in the literature are usually limited

to the non-negative case.)

Most of the groundwork as far as the convergence and representation

theorems is concerned has been laid in KSh (1980). However, in the pre- 4

sent paper we clarify, using examples of specific distributions, some

ambiguities and certain inconsistencies related to the structure of

various characteristics of multivariate distributions in our search for

the most meaningful and practically attractive expressions and repre-

sentations of these distributions which would expose the hidden depen-

dencies among jointly distributed random variables. These findings could

prove to be of some significance to future developments at least in areas

such as reliability and pattern recognition.

2. A GENERALIZED MULTIVARIATE HAZARD GRADIENT AND A

MULTIVARIATE GENFRALI7ATION OF THE e.r.l. FUNCTION

In this section, we shall give, among other things, two theorems

that follow as direct corollaries of KSh (1980). These concern respec- '4...

tively a generz lized multivariate hazard gradient and an analogous

. . .. . .. . . . . ... ... ... .. ... ..... '_ -_.,_ r_ -_ ._ ,_ . ;_, .,.. . ; ,- ,r ,- ,-_.-_ .. -. ,_ ,- %. z' .T ,. ., ., , .
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multivariate generalization of the e.r.l. function.

For multivariate distributions, there exist in the literature

basically two approaches to defining hazard functions, both confined

predominantly to absolutely continuous distributions on Euclidean spaces.

The first definition, adopted and analyzed by, among others, Basu

(1971) and Puri and Rubin (1973), is a straightforward extension of the

univariate concept. (A purely discrete case was also considered by Puri

and Rubin (1973).) The hazard function of a random vector X = (XI,...,X p

is defined in this case to be a real-valued function r on {x: 'F(x) > 0)

with values --.

r(x) f(x)/-F(x),

where x = (Xl,... 9X e RP, f(x) is the probability density function, and -

-F(x) is the survivor function given by

-F(x) = P(X > x).

(Here as well as in what follows the inequalities for vectors are to be

understood componentwise.) This concept was further discussed by Block

(1977) where additional closely related variants were proposed, and

treated in a somewhat more unified manner in Galambos and Kotz (1978).
%,'.. .w

We intend to generalize this definition and examine it in greater detail.

However, since our contribution in this case is to be rather substantial -

without relying very heavily on KSh (1980), we shall deal with it sepa-

rately in the next section (i.e., Section 3 of the paper).

The second approach, due to Johnson and Kotz (1975a) and Marshall

(1975), defines a multivariate hazard gradient (in an absolutely con-

tinuous case) as the vector-valued function h on {x: F(x) > 01 with values

h(x) )l(- l, -) og F(x)

= -grad log -(x)

E:.4.'...



(except for a set of Lebesgue measure zero). As was shown by Marshall

(1975) in the absolutely continuous case, the vector-valued h uniquely

determines the probability distribution function (d.f.) or equivalently

the survivor function. Note that each one of the components of h(x)

depends in general on all the variables x.(i = 1,2,...,p). In the first

part of this section (i.e. in part a) we shall generalize the gradient

h to the case of arbitrary d.f.'s and at the same time reduce some re-

dundancy existing in the structure of the components of this gradient.

The main result involving a representation given in this part subsumes

Marshall's (1975) result and is essentially a corollary of Propositions

5 and 8 of KSh (1980).

In KSh (1980) - motivated by the remark contained in Shanbhag

(1970) and the results of Hamdan (1972), Kotlarski (1972), Shanbhag

and Bhaskara Rao (1975) and Gupta (1975) - we also extended the con-
.5...-. .

cept of the e.r.l. function of a positive random variable to an arbi-

trary random variable and have given a representation for a probability

distribution in terms of this function. Some possibilities of the

applicability of the concept in practice have been indicated in KSh

(1980) and the references cited above. (Also, see Hall and Wellner

(1981), Hollander and Proschan (1984) and Glanzel et al (1984) for

further information and references on the e.r.l. function.) A variety

of multivariate generalizations of this function can of course be con-

structed. However, we intend in this case to deal only with a certain

construction that has features closely resembling those of the multi-

variate hazard function of the present section. The representation

theorem in this latter case follows as a corollary of KSh (1980). In

view of the prevailing analogy, we shall devote the second part of this

e. l
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section (i.e. part b) to discussing this particular version of e.r.l.

functions and revealing some of its properties including the aformentioned

theorem. For a related but independently carried out investigation of

multivariate analogues of e.r.l. functions, the reader may wish to

consult Zahedi (1985). This work is however along different lines.

a. A generalized hazard gradient and some of its basic properties.

Let p > 2, F be a d.f. on RP and X = (XX 2 ,...,X p) be a random vector
distributed according to this d.f. Let (i ( wthx ----

(xii+l '...% Xp X(l) --x denote the hazard measure on R for the

conditional distribution of Xi given that Xi+1 > xi+,...,X p > Xp

(as stipulated in Section 4 of KSh (1980)) for every x(i+l) 6 RP i and

i = 1,2,...,p-l. (We define the conditional distribution to be arbitrary

for any conditioning set of measure zero.) Also, let N.)(.) denote

F

the corresponding hazard measure on R for the marginal distribution

of X . Extending and modifying the definition of Johnson and Kotz (1975a)
p

and Marshall (1975), we call the family

{V i) x +l):x + e Rp i i= 1,2, ,p- I:- *"

the hazard gradient relative to the d.f.F. We have the following theorem

which is essentially a corollary of Propositions 5 and 8 of KSh (1980) -

(see, also, Cox (1972)): 5..-.

THEOREM 1. The survivor function corresponding to F is represented by

-F(x) = P(X=x) = 1{ 1 {I( F i{Y~ilx )-"

- i=l YiEDi ( ) .ii-l-( i )

x exp- (c ' i)(( - , x i ] jx ( i + l ) ) ] , x e Rp (2.1)

and for a continuous F the representation is

,, N'-

.............................................................................................................................................- .. ;.,'.
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(x)= exp{- (Fi)(-.,xiJIx(i+l))}, x e Rp, (2.2)

where the notation vF (.Ix(p+l)) is used for convenience to denote

V F (-), Oe is defined to be zero, D Cxi ) is the set of real points

Yi < xi at which i) ({YiIx(i+l)) is positive, and v ("(i+l)) the
""~ ~ Fi .xii) Ftemr ifFs----'

continuous (non-atomic) part of vF (Ixi+i)). Furthermore, if F is

continuous and {F n=l,2,..., } is a sequence of d.f.'s on RP , then

using the same notation

(i) i)V F ((-'xi]Jx(i+l)) VF ((-~'Xi1x(i+I)) (2.3)
n

for each x such that F(x) > 0 and i 1,2 ,...,p if and only if {Fn}

converges to F.

Proof. (2.1) and, if F is continuous, (2.2) follow immediately from

Proposition 5 of KSn (1980) in view of the relation

P(X > X) = p(x > x ) x 1 iCX>X
Sp -p i > XiXi+l > x-i+,...,X p > Xp

p
continuous and for every x such that T(x) > 0 and i = 1,2,...,p-l, the ,.

conditional distribution of Xi given Xi+ 1 > xi+ , ...,X p > xp is continuous.

Cn) (n) (~n) .
Also, if X(n) = 1 n , ,n for each n > 1 is a random vector dis-

tributed according to F , then for each n > 1
n

(n  x) (n) > X 1 P (n) > x (n) (n)
P(Xn > ) P(x p T i- P(x. x .-

R. (2.5)

."..-.*
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Applying Proposition 8 of KSh (1980) to the survivor functions on the

r.h.s. of (2.5), it can be easily verified that the convergence part

of the theorem is valid. .

Remark 1. . '

For absolutely cont-nuous distributions, representation (2.2)

reduces to that of Marshall (1975). Both (2.2) and (2.1) are thus

extensions of Marshall's hazard gradient representation. moreover, -.

the general representation for purely discrete distributions follows

from (2.1) in the obvious manner.

Remark 2.

The "convergence" pdrt of Theorem 1 fails to be valid if the

assumption of continuity of F is omitted. Examples 1-3 presented in

KSh (1980) following Proposition 8 in Section 4 are sufficient to

illustrate this situation.

Remark 3.

The hazard gradient obviously has other versions when the ordering

of the variables is altered. Under a specific situation, one may find

a particular version to be the most natural and easiest to handle. In

that case, we shall of course consider the corresponding ordering to be

the one implied in our Theorem 1. A similar remark applies to the result

of Theorem 2 below.

Remark .'

The following observation related to univariate hazard measures

may be appropriate at this point. (See also the beginning of Section 4

of KSh (1980).) If G is a d.f. on RI , then according to representation

I,.-

'V - ,

-" ' " ".'" ""- . 1* .I ','J. KWV.-..""- "- -""" .-2 I., ' .-. ". -"- ". - -"." *,...•.-- . "V" V
" ." V -* "-"
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(4.1) in KSh (1980) either

x (1eD(l-G{Xr})) =0 or H( ) =Hx ,D G r, c

where v is the hazard measure corresponding to G, 0 is the set of dis-

continuities ofvG and H (x) (C) x' ) G
G (% -G b

part of v Whenever the right extremity of G is not one of its dis-

continuity points, we have vG({x}) < 1 for all x e D. Now the BorelG r r

zero-one law and relation (16) given in Burrill (1972), p.245, imply

that X -V({Xr}) = 0 if and only if xii v ({Xr})= providedx sD G r f xTeDvG({r)r rVG({Xr}) < 1, x r D. This leads us to the relation
G rr 'm:'

G((- ,o)) = vG({x 1)+ Hc(o)= (2.6)
G x'eDvG r c

r

whenever the right extremity of G is not one of its discontinuity

points. (This result was obtained earlier by Shanbhag (1979) using

a somewhat different argument.)

Remark 5.

As a corollary of Theorem 1, it follows that the components of X

a;-e independent if and only if there exists a version of the hazard
gradient of F such that v(i) ) is x(i+) for

Fo+)i e e d n o

each i = 1,2,...,p-1. The theorem also yields several other interesting

corollaries. In particular, since the theorem also implies that every -

distribution on RP is characterized by its hazard gradient, one could

obviously use it to give further characterizations of distributions,

such as the Marshall-Olkin bivariate distribution or Frechet's m, lti-

variate distribution with continuous marginals or a multivariate Pareto "

distribution, for which the hazard gradients are of a particularly

appealing form.

6-

-. a. .- d.-e ~ J ~ j j
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b. The generalized e.r.l. function and some relevant comments.

In view of Proposition 3 of KSh (1980), (2.4) in the proof of

Theorem 1 above implies that under some mild assumptions there exists

a representation for the survivor function of every p-component random

vector X = (X1 .... Xp) in terms of the conditional expectations

E{h_(X )LX. > x... 9X > x ), (x.,...9x ) e RP of monotone trans-
1-1 p-p p

forms hi , i = 1,2,...,p. This is given by the following Theorem 2.

The theorem yields, among other things, that if X is a random vector

with E{X T} < - for all i = 1,2,...,p (where X.+ = max{O,Xi}) then the

conditional expectations E{Xi-x IX i x p , i = 1,2,...,p,,> x

x( = (xI ... ,X)) e RP (and hence E{X-xIX > x}, x e RP ) characterize th"
" .

distribution of X; the representation in this latter case is also ob-

vious now. Since the family of expectations {E{Xi-xiX i > xi,....Xp > x ":

i = 1,2,...,p, x e RP ) avoids some of the redundancies existing in the p

function E{X-xlX > x}, x e Rp and has all the obvious requirements of

an e.r.l. function, it would be reasonable to adopt it to be the e.r.l.

function of a multivariate probability distribution on R
p.

THEOREM 2. (A representation theorem). Let X = (X1 ,... ,X) be a random

vector with p components and hi , i = 1,2,...,p be real-valued non-decreasing

functions on the real line such that E{h (Xi) < - for all i = 1,2,...,p

(where h.(Xi) = max{o,hi(Xi)}) If h., i = 1,2,...,p, are such that1 11 1, - -

h.(X.) < E{h.(X.*jX. > x. > x X> x ) whenever P{X i > xi -91ix i 1 1 1(i~~ 1 xi -X+ >_ i+,...,xp_ p 1 ...

X > xi+ 1 ,...,X > x > 0, then the survivor function corresponding

to is given by

p
P(X > x) = n GI X( ) (2.7)(xi, ... , (2.."i=l i
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where x~l (X Cx . x)

0 if x.i > b.i for b.i

lrn G(y,x.+,) if xi b. for b. <

and G.(X * (c
i i) g X.jY. ) r dh.()W

urni~l g .z(+))ep

11 gizeD 1)Y

if x. > b(2.8)

in which D(') denotes the set of discontinuity points of h. in
y. ,x.
(C)

[yi~i),hic denotes the continuous part of h. (i.e. of its right contin-

uous version),

g i iz ) + (hi(z) - hiz-)) gi(z+,x(
9i (z'x (i +1) 9iz+,x(i+1 ))+ (hi(z+) -hi(z)) 

9.j Z'X~i

P (2.9)

if {y: urn exists and < ~ i mt
x.+y .-

and b.=

infly: li trn ( )Xj > x i) exists and < h,() tews

with X (Xt ,. .. X )

jiM p



. - . . .° % '..

I?.. •,%

(The conditional distributions are defined arbitrarily when the condi-

U-. tioning sets are of measure zero; also (2.8) and (2.9) in the statement

above are to be read without x~i+l in the case of i p.)

i-' .i-

Remark 6.

In view of Theorem 3 and the information given in the Remarks in

Section 3 of KSh (1980), it is possible to present several extensions

and variants of Theorem 2 given above.

Pemark 7.

If h.'s in Theorem 2 are assumed additionally to be continuous,

then the representation (2.7) with G.'s given by (2.8) without the term

{ ii gi(z,x(il)} and with h. s replaced by h.'s is valid.

zeD(i) l 1

yixi

Remark 8.

If hi(i = 1,2,...,p) of Theorem 2 are taken as strictly increasing,

the representation (2.7) for a survivor function is obviously valid in

the case of every distribution satisfying the integrability condition of

the theorem. One may be interested in seeing whether there exists a

representation for the survivor function for X in terms of the conditional

expectations corresponding to a fewer number of functions, which are

appealing in some sense, at least when the domains of the definition of

h. are taken as Euclidean spaces with h.(X i) considered above replaced

by h (X X(i) being a subvector of X. However, it is not difficult

to see that in general merely with the integrability condition such a

representation does not exist. This could be verified by noting, for

example, that if h. i 1,2,...,p-I are given to be real-valued Borel

A. '..! .-

. . . . . -... . . . • , ,. . •-.. -. , • - . . . . - . . . - ,
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measurable functions on Rp , then there exist random vectors X and Y

with distinct distributions having a common support (such as ((0,... ,0),

(0,...,0,1)}) such that

E{hi(X) X > x} = E{hI (Y)IY > xl for all x e RP and i = 1,2 ...,p-l.

Remark 9.

Prakasa Rao (1974) has essentially attempted to solve under some

constraints the problem mentioned in Remark 8. He has given in this

context a uniqueness theorem in the bivariate case under certain assump-

tions. The following example shows that the theorem is not valid.

EXAMPLE 1. Define h to be a real-valued function on R such that

2 1
h(x,y) :(1e-x )(Y), x,y e R

where

c if y < 1

C y+ 6 if 1 < y < 2

/I(
3-y)3

(y) c + (y-2) + if 2 < y < 4

c + 2 + (y-5) if 4 < y < 5

c + 2 if y > 5,

where c is a positive number. Alternatively, one could consider the h

with a slightly more trivial situation of c for c 0. Let (X,Y)

and (Z,W) be random vectors with absolutely continuous independent non-

negative components such that X and Z are identically distributed but

the distributions of Y and W are not identical. Also assume the random

vectors to be such that their marginal distributions have all left ex-

tremities to be equal to zero and

P(Y < 1) P(W < 1), P(Y < yIY > 1) = P(W < yjW > 1) for all y > 1.

V.~. .

_ _ , . ...

i_
°

. . .. . . . . . . . . . . . . . . . . .. . . . . , ,- .
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Observe that all the assumptions in Theorem 2.1 of Prakasa Rao (1974)

are satisfied with x° = yo = 0. Moreover (X,Y) and (Z,W) satisfy

Prakasa Rao's stipulation (2.0). However, in this case, the conclu-

sions of the theorem are not valid. (it is obviously possible to

illustrate this point by other examples of a similar nature.) .'. .

Remark 10.

In view of Theorem 2, characterizations based on e.r.l. functions

are now obvious for the well known distributions such as the Marshall-

Olkin bivariate distribution, the Farlie-Gumbel-Morgenstern distri-

bution discussed in Johnson and Kotz (1975b), Gumbel's bivariate ex-

ponential distribution, the multivariate Pareto distribution and several

other multivariate distributions appearing in Johnson and Kotz (1972).

One could also apply the theorem to arrive at further characterizations

based on conditional expectations for distributions such as Frechet's

and those discussed by Krishnaiah (1977). The following example may .

serve as an illustration of this point. F

EXAMPLE 2. (Fre"chet's bivariate continuous distribution). -.

Consider F to be the continuous d.f. on such that the corres-

ponding survivor function is given by -.'...%

F(xl x 2  min{l-Fl(xl) l-F2(x2)), (xl x 2 ) R2

with F1 and F2 as univariate d.f.'s. Clearly, since F is assumed to

be continuous, we require F1 and F2 to be continuous here also. Define

h.(x.) = (Fi(x)) x e R i 1,2,

where 0 < a. < and fixed. Then it follows that if X = (XI,X2 ) is a

2
random vector with d.f. F, we have for every x(=(x i ,x2)) e R and i : 1,2

- i
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:...

E {hi(Xi)IX > x}

l{-(G(x)) }{I-G(x) if G(x) < 1

1 if G(x) = 1,
where G(x) = max{Fl(Xl), F2(x)}. (On the set {G(x) 1 1}, one could

11 2 2
also define E{hi(Xi)IX > x) differently.) Obviously, given ai and Fi ,

{E(h 1 (XI)jX 1 > xl , X2 > x2), E(h2(X2)IX2 > x2): (xl,X 2) = R
2} character-

izes the distribution considered above among all bivariate distributions

which have the right extremities of the marginals lying in (left extr. F1 .

right extr. F2] and (left extr. F2, right extr. F2] respectively. (This

distribution has several other interesting characterization properties

also, the recent characterization based on discretized Shannon entropy

given in Bertoluzza and Forte (1985) being one of these.)

3. EXTENDED VERSIONS OF THE RESULTS OF BASU AND PURl

AND RUBIN DEALING WITH THE HAZARD FUNCTION

We shall now discuss a rather substantial generalization of what - .

is known in the literature as the "scalar" multivariate hazard function.

Let, as in the previous section, F be a d.f. on Rp, X be a p-component

random vector with this distribution and F be the corresponding survivor

function. Denote by PF the measure determined by F on (the Borel a-field

B of) R . Since, in the multivariate case, we can have an F such that

P l
PF{X: -F(x) = 0) > 0, (e.g., if we take F to be continuous such that

PF{x(=(Xl 9.,X )): x. = -x2} = 1, we obtain PF{x: (x) 0O = 1),
Fn 1 2F

the definition of a hazard measure in KSh (1980) is not extendable as

it stands. However, if we restrict ourselves only to the set C (say)

S of distributions F for which -F(.) > 0 almost surely [PF ] , the definition

., F.l,-.

A .
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". C.%

"-. in KSh (1980) of a hazard measure admits an obvious extension. Suppose

then that F e C and define vF to be the scalar hazard measure on RP

given by

V (B) = _ dPF(X) for all B e B (3.1)

Fx p

The integral on the r.h.s. of the equation can be written following

the accepted convention in the literature as 1 dF(x).

In the case when F is an absolutely continuous d.f. with respect

to the Lebesgue measure on Rp, vF also possesses this property and thus

the Ra don-Nikodym derivative becomes the hazard function, studied by

earlier authors, a.e. on {x: F(x) > 0). It follows from the investiga-

tions of Basu (1971) and Puri and Rubin (1973) (see also, Galambos and '"

Kotz (1978)) that the measure vF does not in general determine uniquely

the distribution F. Consider then VF to be the set of d.f.'s on RP

that are members of C having the same scalar hazard measure as F. Clear-

• ly the set P defined herein is convex although not necessarily closed
F

relative to weak convergence.
4,.

Consider now the set of all d.f.'s on the compactified Euclid-

ean space 1--,-]P. There exists a normed linear space of which this

is a compact subset and the corresponding relative metric is a metric

of weak convergence. Then, as a further subset of this compc.ct

set, the closure F of the set V F is also compact. (For simplicity

we abuse the notation slightly here and elsewhere in this section by

I denoting the set of all d.f.'s on 1 -0 , 0 ]P which are extensions of

members of VF also by V Since 0F is also convex, Choquet's theorem

J . .. .%'.4 4

,,,,W;

4" " , " , P w ", • P : , ", " , " " , ," " , ", 4"• , " ,", ", ", " " W " " = " . - , " ,
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(cf. Phelps (1965) page 19 and also Kendall (1963)) implies that each

F e PF can be represented as the centroid or barycenter of a probability

measure on the Borel a-field of the linear space which is concentrated on the

set of extreme points of pF" In general, the problem of obtaining the

extreme points of V or merely of IF seems to be a difficult one and ,

we have not as yet obtained any positive information in this connection.

However, through a theorem and two corollaries to follow, we shall

provide some valuable information concerning the problem of characteriz-

ing F on the basis of v F This gives, among other things, the Poisson-

Martin representation for F in terms of v F when F is continuous and a

more natural extension of the univariate hazard measure to the multi-

variate case than the hazard gradient of the last section, possessing

the uniqueness and stability requirements.

Before discussing our main results of this section, the following

instructive examples making some specific points are worth revealing.

EXAMPLE 3. Let
p

F(x) = i Fi(x.) x (xi ... x) e Rpi P . .''- 111

where Fi are continuous d.f.'s on RI . Then, appealing to the result

of Puri and Rubin (1973) or our observation above concerning a repre-

sentation for the members of F' we can easily see that each member "..
F. '".

F e VF has the following form:

( f P Xi
F (x) = {l-(l-Fi(x)) G(), x e Rp, (3.2)

Rp i=l .

where G is a d.f. on Rp such that the corresponding measure is concen- ..'-

.................................................-.
-. .. . '.

•
/ -- -. '.- - .- .- ...- ...- - ,-..-. , ;..' -.- .-.-., .- ...- - ...-... ,..- .... -. "--. "..",.-.- -%".' ". ... ': " -
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ptrated on the set {: .l 0, 1 1,2,... . Also, this
*1 ~i=l+

can be seen via the Poisson-Martin integral representation given for

the members of 0 F in Corollary 1 below. Incidentally, in the present

case, the extreme points of -V are given precisely by the d.f.'s F of

the form

F (x) f (1 - F.(x i ) x R" i =I 1' "-

p
with x. > 0, i = 1,2,...,p and Ii A. = 1 and any extreme point of F

is either an extreme point of tF or a d.f. on [--,-]P which is the

weak limit of a sequence of extreme points of VF" Looking at an arbi-

trary member F given by (3.2) in the case of p > 2 for DF, we observe

a curious property of VF that if F e V F and any p-l of the p univariate
* * . .'

marginals of F agree with those corresponding to F, then & - F. In

other words, we have in this case that if a d.f. on RP has p-l of its

univariate marginals precisely the same as those corresponding to F and

its scalar hazard measure on Rp is defined and is given by vF, then

this d.f. has to be F. Since every univariate d.f. is uniquely determin-

ed by its hazard measure, v.e could also restate this property utilizing

only hazard measures. (For some recent advances connected with the re-

sults discussed herein, see Lau and Rao (1982), Rao and Shanbhag (1984)

and Davies and Shanbhag (1984).)

EXAMPLE 4. Let p > 2, k be a real number and S be a countable subset
RP-I .,:.

of R Also let G denote the set of d.f.'s on Rp -l that are concentrated

on S giving a positive probability mass to each point of S. For each

G e G, let FG denote a d.f. on Rp such that it is concentrated on

Ix: x e , x. k with" 1...

o•.



18 6'_

F G (xl. $.X P-1o G(x 1 .x -l)' (x19 ...,9x P-1 6 pP1

(in the usual notation). It is easily seen that here vF are all (well

defined and) identical. If we now consider p > 4 and any of the FG .
G

to be F, then it is clearly seen that the condition that F e VF does 1K

not imply F = F even if it is given that F has all of its univariate

marginals or bivariate marginals to be the same as those of F. However,

for the F in this example, the condition that F e 0F together with

F (x 1 ,..,Xp_ 1 ,o) = Xp_1 , c), ,x~ .Xp_ 1 ) e p -
(x .xF(x 0.I x (xI  e R.

implies that F = F. Note also that here we have the set of extreme

points of V F to be empty and the set of extreme points of VF to be the

closure (relative to weak convergence) of the set or the degenerate

d.f.'s on [-,-]P that are concentrated on {x: x F RP, xi = k}; clearly

here the situation of the last example that each F e F has an integral

representation in terms of the extreme points of OF is not valid.

In spite of certain isolated cases, such as that of Frechet's dis-

tribution of Example 2 or of a d.f. F that satisfies for some b e Rp

the conditions F(b) = 1 and F(b) = PF({b)) > 0, in which the F is char-F#

acterized by vF' it now follows that, in general, unless at least one of

the (p-l)-variate marginals of the distribution (or something equivalent

to it) is given, vF does not characterize F. One might then be interested

to know whether F is characterized by vF given any one of the (p-l)-variate

marginals. Our attempt to answer this question has been only partially

successful so far and the findings of this investigation are presented,

among other things, in the following results.

We are now ready to give our main theorem of the section together

with the two of its interesting corollaries. (The reader can find some

analogy between the proof of the theorem given here and Seneta's (1984)
,'rol

'4 - .'..

C. 4. - -.- . . . . - ~. * .**. .:*.
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proof of the Poisson-Martin integral representation theorem for a super

regular vector corresponding to a non-negative matrix.)

THEOREM 3. If F e V F and, for each i 1 ,2,...,p, we have (in the

standard notation)

for all x. e R i = l,2,...,i-lji+lI...,p# (3.3)

then F =F. Furthermore, given an F e Ithere exists a probability

measure on the set of all d.f.'s, G on I~ac]' such that

F (x Gxd*Gxe(3.4)

where p*(K) =1 and is the closure (relative weak convergence) of the

set of the d.f.'s K N. for t such that F(t), T(t) > 0 (T being the sur-

vivor function of F as in the last section), where each of the Kt) is

defined to be a d.f. on [..w,m=J such that it is the degenerate d.f. at .

t if P (It)) = (t) and the d.f. satisfying the following otherwise:

k(x ,t)
Kt) W -ot (3.5)

t k(tt) x6(-t

with

k(y,t) =A(Y) + ndl {((y~y, ' ...l~t Fn Fn) Y e E",]

Sbeing the d.f. degenerate at t. (The proof of the theorem asserts

that K (N is well defined.)

4t ?~

Proof. In view of Fubini's Theorem and elation P (B) = IF(x)dvF(X)

~~~.~r 4r.........
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:En~t + () n+1)l )p "";tf( - x f( - P F*"(t-. Xl))_

- {- t) ( ,Xn. (-- x 2 1- ~ F ~ -

dvF(xl)...dvF(xn), n > 1, (3.7)

where the sequence { t): m =O'l .,,..)(for each given Q t is such that 3""i

it depends only on v) and d.fo'S F (xl, .... ,Xi~l X~,.,p , '''''

, -. * 4 .

F -I-t for (-1) t (sc tat FF

fro (3.6)o that te multiplnu tegr-Fand o n d the fct.7hated {x to{R,  -;

eread the seuence FC =-F n e0uifn r eac give Ti is hes the ,-2

fir t a t the thoreach t su..a. P It}. fl

fro (3.6) tha the mul cotipleiteg of n a the hsf(3.7)ated to xf.R

vaini(3.7)econverges to=FFtoranduhenceewelhave FthTtiife(3.3)iisevalid

fthen f h herm

To establish the second part of th and the fact that def.

B = {t: t e RP , F(t), -(t) > 0 , l h (

Bo eIt: t s condN = P({t) to, d efin

and Bm  {t: t e B, T(t) > PF({tm) 0,
.5...- .and = t: te B ~(t > F({t1) + Lm =1

If F i IDF, then by the monotone convergence theorem, we getSF

T (x) = T*(ydvF) ..
" [ X ,- ) F ( .i-

Bt(x)d T (T (t)dvF(t), x e Rp .  (3.9)
.,. m -F

;'.-f--. B
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Now, for every m > 1 and t e B, t of (3.6) is bounded by m/(m+l)

and hence it follows from (3.6) that k(t,t) is bounded on B for each

m > 1. Also, if we define k(x,t) = k(t,t) - k(x-,t) for each t e B q Bc
.' . .

and x e RP (with this to be zero if x # (--,t]). Fubini's Theorem

implies that for each m > 1 and x Rp

'F(x,t)T*(t)d\ ) .I17

m

:B -t (tdv M + L(x,t)P (B ().)dv ). (3.10)

Bm  B F
m

where B (t) = [t,-) q Bm. Observe that (3.10) follows easily from the

relations:

k(x,t) = t(x) n L t x J dVF(Yl)" dvF(Yn),
" ~ " n~n 1 Ix,t] fX,Yn] [xy] "..-.-.

x < t, t e B n B0,

and

F (t)d, PF*(' Y B n Bc m,n > 1.Bm FYn F~ ~Bm ~- )) o' -0 "

From (3.9) and (3.10), it consequently follows that there exists a

sequence (P : 1,2,... of measures on R such that 1m(R
p ) < 1 for ..-

all m and

TF(x) = 1ir f (x,t)du (t), x e RP , (3.11)

" m- JB . m.

... ... .,,

which in turn implies that {p (B)} converges to 1 and hence that there
m

exists a sequence {, I of probability measures on RP for which (3.11) is

valid. Since K is compact, using Parthasarathy's (1967) Theorem 6.4,

Pi,., W.
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it can then be easily seen that there 
exists a probability measure 11*

on such that 
"

F (x) : (x)d (G) x c Rp .

Since 7F is the closure of V a further application of Parthasarathy's
Theorem yields the validity of the second part of our theorem.

The following two corollaries of Theorem 3 are easy to prove:

COROLLARY 1. (The Poisson-Martin representation): If F is continuous,

*
then we have a d.f. F on R to be a member of VF if and only if it has

a representation

F (x) : G(x)dp(G), x e Rp

F 

,

for some probability measure v on K n VF. (In the present case, we also

have K 0F to be a G set of the space of all d.f.'s on [--,-]P.) .

COROLLARY 2. The hazard measure vF jointly with the hazard measures

relative to all the univariate and multivariate marginals of F determines

F uniquely. (This corollary can be verified by induction.)

* 10

Remark 11,

It can be noted that the result of Corollary 1 does not remain valid

if the issumption that F is continuous is dropped. Also, in view of what -.-

we have observed, it can be concluded that if F is continuous, then we

J have the set of extreme points of VF to be a nonempty subset of K and
*F

each F E VF to be the barycenter of a probability measure that

ib is carried by the set of extreme points of VF .

I.
U.,S--, 

-z

".. 

. . .. - ' '. o ' 4 . -" -

A".--, 
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Remark 12.

The finite collection of hazard measures given in Corollary 2

appears, in spite of the restriction that F e C, to be a more natural

multivariate analog of the univariate hazard measure than the hazard

gradient of the last section. A stability theorem for the collection

is valid when F is continuous, as is shown by Corollary 3 of the next

section.

4. A STABILITY THEOREM

We conclude the paper by proving and commenting in this section on

a general stability theorem for probability measures on metric spaces,

which yields, among other things, the two stability propositions in

KSh (1980) as simple corollaries. The proof of the present theorem uses

Prohorov's (1956) and related theorems in Billingsley (1968) dealing

with the convergence of probability measures. It might be instructive

to compare this with the proofs of earlier stability propositions in KSh

(1980). The techniques used for proving the theorem here are indeed of

a more global nature than those which are sufficient in the case of

probability measures on the real line, • .

Now, let S be a metric space, T an index set, S the Borel a-field

on S, , Pl 1  P2 1 p3 families of probability measures on (SS), {A t: t F Tj

a family of collections of sets with At 6 for every t e T, and

fh(.It,AtP): At 6 At, P e P, t 6 T) a family of real-valued Borel

measurable functions on (S,S) satisfying the following conditions in

which the notation D(t,At,P) stands for the set of discontinuity points

of h(.it,At,P)o

i,"-4"

° -p
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i) Pis P22 P3 c P, also P2 is closed (under weak convergence),

(1) (1)(1)
(i 1 '2 '0),... 46 and {P n > 1) converges weakly

to P a P h(*-It,A P ((l)AtP* as n- uniformly almost

& ~ surely [P1 on A t n Dc(t,At,P*) and

sup E (){Ijh(.It,AtP~l))I f{ltP)I 1 0

n>l n t I_

as ~ * for each t e T and P*-continuity set A t in At with P (At) positive,

(ii) P 12) 2) C V and are distinct %* there exist t e T and A t 46 At

such that P 2 (A~) P 2 (A) are both positive, A is both P 2)continuity1 t 2 tt
(2)set and P 2  -continuity set and

1 2
and

P (v) P~ C P 3  D(t,At,P~" has zero P ~'measure for every t in T

and P(3)-continuity set At in At

Further, let P c P and {Pn: n > 1U be a sequence of members of P1

such that fP n 1 ,2 .... i relatively compact. Then we have then

following stability theorem:

THEOREM 4. (a) The condition that

P f P {P :n > 1) converges weakly to P (4.1)
N3' n

p implies that

EP fh(*ItAtP n)IAt E p{h(.ItAtl)P)IA ti (4.2)

as n -~for every t 1E T and P-continuity set At r.A with P(A )> 0.A
Moreover, (b) if additionally P, Pis P2  F* P and the set of cluster29 2

points of tP :n 1,2 ....l (relative to weak convergence) is a subsetn
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of P3' then the converse assertion is valid.

Proof. Assume first that (4.1) is valid. Since P E P 3  it is obvious
I..'.'%

that the set of discontinuity points of h(.ItAtIP)I has zero P-measure

for every t £ T and P-continuity set A c A Now, let t c T and P-t t*
continuity set A e A be arbitrarily fixed. Since P c P. n > 1 the

At a rai e.
requirements of Billingsley's (1968) Theorem 5.5 are clearly met with

h(-jt,AtP)I as h and h(.It,At,Pn)I as hn. This theorem implies

that {P h , n = 1,2 .... ) converges weakly to Ph- . If we now consider
n n

Xn, n > l and X to be some random variables having distributions Pnh

n > 1 and Ph- respectively, we have {Xn: n = 2,...} converging to X

in distribution. Also, the fact that Pn e I~l n > 1 implies that

{Xn: n = 1,2,..} considered here is uniformly integrable. Since

Billingsley's (1968) Theorem 5.4 yields that E{X } E{X) as n - inn

such a situation, we can conclude that

E~ {h(-t,At,P )IAt - E p{h('ItAt'P)IA } as n =. (4.3)
n t t

In view of the assumptions that {P I converges weakly to P and A is a
n *

P-continuity set, it follows that P n(At) t P(A ) as n 4 . If P(At) t 0,

we have (4.2) then as an obvious consequence of (4.3). Hence we have the

first part of the stability theorem to be valid.

To establish that the second part of the theorem holds, assume that

P' PI P2 ' ... C P 2 and the set of cluster points of {P n ,2....

is a subset of P3 and also that (4.2) is valid. Since each cluster point

of {P n = 1,2 ,.. } is an element 'f P and {P n = 1,2,...) is rela-

tively compact, we should have a subsequence {P r 1,2,...., of
r

nn l,2,o.., converging weakly to Q P P3 with Q / P unless (4.1) is
n 3l

_****_-*. * - - -.. - .." ' L - - . . . --- '- - - "-,- -: --" -- -.' - - -'-- ' ". . "
-

-



j"%7VV%-~~~ X73 r* _. F.. -F -. , . , r 7 . W

27

valid. If Q denotes the (weak) limit of a subsequence of {P ""n

then clearly we have Q e V 3 and hence the first part of the theorem and

the validity of (4.2) lead us to

Ep{h(-It,At,P)IAt} = E *{h(.It,At,Q )iAt (4.4)

for every t e T and At A such that At is a P-continuity set witht

P(At) > 0 as well as a Q -continuity set with Q (At ) > 0. We have assumed

that P P and for each n > 1, P r P and also we have P to be closed.[.,2- n ,,2 2
.. * , .t-,- ,~5.

In that case, we have P,Q e V and hence, in view of (4.4), Q = P. It -
2

is therefore impossible that (4.1) will not be valid. Hence we have the

second part of the theorem.

Remark 13.

In the case of h(-t,AtP) being independent of P, obviously the

part of condition (ii) that h(.It,At,P I(l))AtP uniformly

almost surely [P 1 on At n D c(t,At,P) for every t e T and P -continuity

set A with P*(A > 0 is trivially met. Also, if h(oIt,At,P) are all

continuous, then the condition (iv) above is obviously satisfied with

P3 = P. If S is a Polish space or in particular, if it is a Euclidean ."

space, we have a sequence {Pn: n = 1,2,...) of members of P to be
n

relatively compact if and only if it is tight in the sense of Billingsley

(1968: p.37) (cf. Theorems 6.1 and 6.2 in Billingsley (1968)). Thus, it

is evident that in various specialized situations, the theorem given

above has simplified and perhaps more appealing versions.

Remark 14.

If the stipulation "the set of cluster points of {Pn: n = 1,2 ....n

is a subset of " is replaced by the weaker stipulation "the set of3 .-".

6s-



28

cluster points of the range of {P : n =1,2,...) is a subset of P3 '
n 3

V.

Theorem 4 still remains valid provided we also replace "the converse

assertion is valid" by "(4.2) implies that {Pn: n = 1,2,...) converges

weakly to P'.

Remark 15.

To illustrate that the stability theorem just proved does not remain

valid if the assumptions P e P3 and the set of cluster points of

{Pn: n = 1,2,...) is a subset of P3 respectively appearing in the two -

parts of the theorem are omitted, it is sufficient to consider the

following example:

EXAMPLE 5. Let {Xn: n = 1,2,...) be a sequence of strictly increasing,

real numbers converging to a real number x'. Let x' be a real number

greater than x'. Define P, P', {Pn: n = 1,2,...) to be a sequence of

probability measures on the Borel a-field of R1 such that for some

0 < a<1 .,z

4 JC1 if x X
n ( {x) ) = n

n ~ - if x=

-if x x' = ,-'-

P(x) if x= X"

and
a + - f =x

4' ~~~P't{xy) d-) ix '
=£o-c if x--x-.

* '. . ,

where c and d are given real numbers such that c < d and {a(d-c)/(x''-x')}

< 1 - a. Also, define h on R such that

• ,~ if x < x',,.,
d + (x-x') if x > x''.

-4
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If we take T the singleton {I1, A1 = {(--,x): < x < x
*%

S{P,'p ',PP 2 "} and h(-)I,A,P )= h(.) for every member A ofA 1
2*,... I

and P e P, then it follows that P itself satisfies the requirement

of P1 and P2 mentioned above. However, in this case we cannot have %

a nonempty subset P3 of P satisfying the condition (iv) as required.

-'S Consequently, it follows that in this example neither the requirement

of Pe p 3 nor the requirement of the set of cluster points of

{Pn: n = 1,2,...) being a subset of P3 are met. Observe that here S..

{Pn: n = 1,2,...} converges to P weakly, P P' and (4.2) is not valid

(since E~ {h(.)IA} / E {h(.)IA} whenever A = (--,x) with x < x') but
P -pn

(4.2) with P replaced by P' is valid. This implies that with the de-

letions mentioned above neither the first part of the theorem nor the

second part remains valid.

Theorem 4 has several interesting corollaries. In particular it

yields that if a characteristic property exists, based on conditional

expectations of the type Ep{h(.It)IAt) for probability measures P within
p

a certain class, then, under certain mild conditions, one can produce

a stability version of the property. It is easily seen that Proposi-

tion 4 of KSh (1980) is an obvious corollary of Theorem 4 and also it

is not difficult now to state a stability version of our Theorem 2 of

'S Section 2 based on Theorem 4. (Note that in view of what was revealed ""

in Remark 13, the statement of Theorem 4 simplifies under the situation

in Theorem 2.) It is also worth pointing out in passing that (in view -.

of Proposition 5 of KSh (1980)) the "only if" part of Proposition 8 of .,.

KSh (1980) follows as a corollary of the "first part of Theorem 4 by

= 
1 T{ 1  1letting S = RI , T (--,b), At {RI for every t e (--,b), P P = the

set of measures in the sequence
",0 S.D

'., - " ", , .,.,L, ' ',",'.¢-'-'L ,,,J. . " ."_.' W, , _". .'_ .' .;. .'.' - ,, '-'1 . . - ,-.--, '.'..' ' -- '4_'
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{PF n > 0, F0  F). (= = {P

n

and for each t in T and P in P

( I I if P''([x,)) > 0

h(xlt,At,P*)

0 otherwise; ,

moreover, if some simple a priori observations are made and P, P 1 P'

and P3 are appropriately redefined, the "if" part of Proposition 8 of

KSh (1980) follows from the second part of Theorem 4. Essentially the

same argument leads to the following stability version of the charac-

terization result in our Corollary 2 of Section 3. This result clearly

subsumes Proposition 8 of KSh (1980).

COROLLARY 3. Let p > 1 and {Fn: n = 1,2,...) be a sequence of d.f.'s
__ n

on Rp and F be a continuous d.f. on RP . Assume that F and for each n,

F are members of the set C defined in the last section. Then - .

F (x) F(x) for all x e RP

if and only if

VF (x) -V VF(x) for all x with F(x) > 0,
n-

where the notation vG(x) stands for the vector whose elements (qiven

in some specified order) are vG((--,x]) and its counterparts relative

to all the univariate and multivariate marginals of G, with appropriate

subvectors in place of x and appropriate number of components in ,

and F stands for the survivor function corresponding to F as in the

earlier sections.

- p .- -.



..r + I .. * ..

31

REFERENCES

1. Basu, A.P. (1971). Bivariate failure rate, J. Amer. Statist.
Assoc., 66, 103-104.

2. Bertoluzza, C. and Forte, B. (1985). Mutual dependence of random d.

variables and maximum discretized entropy, Ann. Prob., 13, 630-637.

3. Billingsley, P. (1968). Convergence of Probability Measures,
Wiley, NY.

4. Burrill, C.W. (19/2). Measure Integration and Probability,
McGraw Hill, NY.

5. Cox, D.R. (1972). Regression models and life tables, J. Roy,
Statist. Soc., B, 34, 187-220.

6. Davies, P.L. and Shanbhag, D.N. (1984). A generalization of a
theorem of Deny with applications in characterization theory
(submitted for publication).

T. Galambos, J. and Kotz, S. (1978). Characterization of Proba-
bility Distributions, Lecture Notes in Mathematics, No. 675, N'S

Springer-Verlag, Heidelberg, NY.

8. Gla'nzel, W., Telcs, A. and Schubert, A. (1984). Characterization
by truncated moments and its application to Pearson-type distri-
butions, Z. Wahrsch. Verw. Geb. 66, No. 2, 173-183.

9. Gupta, R.C. (1975). On the characterization of distributions
by conditional expectations, Commun. in Statist., 4, 99-103.

10. Hall, W.J. and Wellner, J.A. (1981). Mean residual life, Statisticsand Related Topics, North Holland, Amsterdam, 169-184 (eds.

M. Csorgo, D.A. Dawson, J.N.K. Rao, and A.K. Md. E. Saleh).

11. Hamdan, M.A. (1972). On a characterization by conditional ex-
pectations, Technometrics, 14, 497-499.

12. Hollander, M. and Proschan, F. (1984). Nonparametric Concepts and
Methods in Reliability, Handbook of Statistics, 4, 613-655, (eds.
P.R. Krishnaiah and P.K. Sen).

13. Johnson, N.L. and Kotz, S. (1972). Distributions in Statistics:
Continuous fultivariate Distributions, Wiley, NY.

14. Johnson, N.L. and Kotz, S. (1975a). A vector multivariate hazard
rate, J. Multiv. Analysis, 5, 53-66, 498.

15. Johnson, N.L. and Kotz, S. (1975b). On some generalized Farlie-
Gumbel-Morgenstern distributions, Commun. in Statistics, 4, 415-428.

16. Kendall, D.G. (1963). Extreme points methods in stochastic analysis.
Z. Wahrsch. Verw. Geb. 1, 295-300.

,.. * * * ,..- .



32

17. Kotlarski, 1.1. (1972). On a characterization of some proba-
bility distributions by conditional expectation, Sankhya, Ser.
A, 34, 461-467.

18. ,otz, S. and Shanbnag, D.N. (1980). Some new approaches to proba-
bility distributions, Advances Appl. Probability, 12, 903-921.

19. Krishnaiah, P.R. (197/). On generalized gamma type distributions
and their applications in reliability, Theory and Applications in
Reliability, Vol. 1, 47, Academic Press, NY (eds, C.P. Tsokos and
I.N. Shimi)'

20. Lau, Ka-Sing and Rao, C.R. (1982). Integrated Cauchy functional
equation and characterizations of the exponential law, Sankhy- A.
44, 72-90.

21. Marshall, A.W. (1975). Some comments on the hazard gradient,
Stochastic Proc. and Applic., 3, 293-300.

22. Parthasarathy, K.R. (1967). Probability Measures on Metric
Spaces, Academic Press, N.Y.

23. Phelps, R.R. (1966). Lectures on Choquet's Theorem, Van Nostrand
Co., Princeton, NJ. --

24. Prakasa Rao, B.L.S. (1974). On a property of bivariate distribu-
tions, J. Multiv. Analysis, 4, 106-113.

25. Prohorov, Yu. V. (1956). Convergence of random processes and limit
theorems in probability theory, Theor. Probl. and Applic., 1,
177-238.

26. Puri, P.S. and Rubin, H. (1914). On a characterization of the
family of distributions with constant multivariate failure rates,
Ann. Prob., 2, 738-740.

27. Rao, C.R. and Shanbhag, D.N. (1984). Recent results on characteri-
zation of probability distributions: a unified approach through
extensions of Deny's theorem, Adv. Appl. Prob. (to appear).

28, Seneta, E. (19R1). Non-negative Matrices and Markov Chains,
2nd ed. Springer, NY.

a. Shanbhag, D.N. (1970). Characterizations for exponential and
geometric distributions, J. Amer. Statist. Assoc., 65, 1256-1259.

30. Shanbhag, D.N. (1979). Some refinements in distribution theory,
Sankhya, Ser. A, 41, 252-262.

31. Shanbhag, D.N. and Bhaskara Rao, M. (1975). A note on characteri-
zations of probability distributions based on conditional expected
values, Sankhya, Ser. A, 37, 297-300.



33

32. Zahedi, H. (1985). Some new classes of multivariate survival
distribution functions, Journal of Statist. Planning and
Inference, 11, 171-188.

~. !

ACKNOWLEDGMENTS

The authors acknowledge the NATO Travel Grant No. 1732 which

covered the traveling expenses connected with Dr. D.N. Shanbhag's visit

to the U.S.A. in July-August, 1980 during which time the initial ver-
."4o°%

sion of this paper was written and Dr. S. Kotz's visit in Sheffield in

May, 1979 during which this paper was initiated. Dr. Kotz's research

was also supported by U.S. Office of Naval Research Contract N00014-84-

K-0301.

Thanks are due to Dr. William Harkness, Head, Department of

Statistics, Penn State University for the arrangements which facilitated

the early stages of this research, to Dr. D.G. Kabe, of St. Mary's

University, Halifax for pointing out the error in the theorem of
S..°

Prakasa Rao (1974) and to Dr. P.R. Krishnaiah for his valuable comments

on the initial draft, his monumental patience and enthusiastic encourage-

ment.

°° •
"° 4.

" 4 '

.N-. -

: :)-,,'.." :" ;:' ,; , ",_.,-':_- ...-.,".."- ..- ','-."., -::°':,'-::--:-':.".."-. .-. ; .:- .: i>i -:. _c-...:.> " " _-:. :* N.-



% I SECURyCLASSFCA1ION c CC-ISPG

REPORT DOCUMENTATION PAGE
16 KV ElJ, SSFC~Ob RESTRIC7,VE MARKINGS

2a SECURITY CLASSIFICATION AUTtIORTY iTVjTO V5

2b DECLASSIFICATION I DOWNGRADING SCHEDULEAprvdfrPbi iel;

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORAC Z

6a NAME OF PERFORMING ORGANIZATION 6o. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION-..

- University of Maryland (~if applicable) Ofc fNvlRsac

~DRep k'. tybk1anzgiPCeF2 t and Sta tistica 7t, ADDRESS (City, State, and Zip Code)

University of Maryland
College Park, Md. 20742

* Ba NAME OF FUNDING /SPONSORING B~b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

OiNR N00014-84-K-0301
Sc ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

ta.adPoaiiyPormPROGRAM PROJECT ITASK ~WORK UNIT

Office of Naval Research ELEMENT NO NO NO ACCESSION NO

ilnonV2 22217II
1TITLE (Include Security Clastification)

* Some New Approaches to Multivariate Probability Distributions

* 12 PERSONAL AUTHOR(S)

Shanbhag, D. N.~ and Kotz, Samuel.
13a TYPE OF REPORT 13b TIME COVERED 14DATE OF REPORT (Year, AMonth, Doy 5 PAEG UN

tQrQ1FROM 915 T091 Sep t- 1986 ,pOUN

16 SUPPLEMENTARY NOTATION

7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necesarpy and identify by block number)
* FIELD GROUP SUB-GROUP jmultivariate hazard gradient; expected~ rem~ainin~g -

ABSRAT Cotiue n f ecssrylife functions; stability threorems; integral rep-

19 BSTACT(Cntiue n ovesil i neessryand idlentify by block number)
* In this paper we extend and generalize to the mnultivariate set-up

* our earlier investigations related to expected remaining life functions
and general hazard measures incluting representations and stability
tneorems for arbitrary probability distributions in terms of these
concepts. (The univariate case is discussed in detail in Kotz and
Shanbhag; Advances in Probability 12 (1980).)

20 DISTRIBUTION /AVAILAILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
IXUNCLASSIFIEDIIUNLIMITED E0 SAME AS RPT Q DTIC USERS Te LRqvr

~a MES rOjt~ILE INDIVIDUAL 2fjtEH4 4ZtrCode@) 22C OFFICE 'SYMBOL %/

DO FORM 1473,.Bil MAR 83 APR edition may be used until exhiausted' SUITY CLASSIFICATION OF THIS PAGE
All other editions are obsoliete.



-. -. -p -- ~p j.

Iv

4'.,
N I

p

'I;
V

N

2
I I.

~. .1

r V

"I-..

,.. :-

4.' ~.

~~~~1


